|
11-note Chords |
|
Chords
in the inversion groups are inversions of each other written in parallel
form. All members of a group have similar fingerings. |
|
|
|
|
|
|
|
|
|
|
|
|
|
Eleven-note chords are
simply the chromatic scale with one note missing. No historical tradition
uses them. Only one modal group exists. |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
!Save
name |
Arpeggio/Scale Name |
Fingering Link |
Formula (Enharmonic) |
Pitch Class |
# |
Inversion group/Scale |
|
Enharmonic Spelling C |
Enharmonic Spelling G |
Enharmonic Spelling D |
Enharmonic Spelling A |
Enharmonic Spelling E |
Enharmonic Spelling B |
Enharmonic Spelling F# |
Enharmonic Spelling C# |
Enharmonic Spelling F |
Enharmonic Spelling Bb |
Enharmonic Spelling Eb |
Enharmonic Spelling Ab |
Enharmonic Spelling Db |
Enharmonic Spelling Gb |
Enharmonic Spelling Cb |
11_1_1_01_Undecatonic_Chromatic |
13addb9add#9add#11addb13 |
(none yet) |
R,b2,2,b3,3,4,b5,5,b6,6,b7 |
{0,1,2,3,4,5,6,7,8,9,10} |
1 |
Undecatonic
Chromatic |
|
C,Db,D,Eb,E,F,Gb,G,Ab,A,Bb |
G,Ab,A,Bb,B,C,Db,Ebb,Fbb,Fb,F |
D,Eb,E,F,F#,G,Ab,Bbb,Cbb,Cb,C |
A,Bb,B,C,C#,D,Eb,Fb,Gbb,Gb,G |
E,F,F#,G,G#,A,Bb,Cb,Dbb,Db,D |
B,C,C#,D,D#,E,F,F#,Abb,Ab,A |
F#,G,G#,A,A#,B,C,C#,Ebb,Eb,E |
C#,D,D#,E,E#,F#,G,G#,Bbb,Bb,B |
F,Gb,G,Ab,A,Bb,Cb,Dbb,Db,Ebb,Eb |
Bb,Cb,C,Db,D,Eb,Fb,Gbb,Gb,Abb,Ab |
Eb,Fb,F,Gb,G,Ab,Bbb,Cbb,Cb,Dbb,Db |
Ab,Bbb,Bb,Cb,C,Db,Ebb,Fbb,Fb,Gbb,Gb |
Db,Ebb,Eb,Fb,F,Gb,Abb,Ab,Bbb,Cbb,Cb |
Gb,Abb,Ab,Bbb,Bb,Cb,Dbb,Db,Ebb,Fbb,Fb |
Cb,Dbb,Db,Ebb,Eb,Fb,Gbb,Gb,Abb,Ab,Bbb |
11_1_1_02_Undecatonic_Chromatic_2 |
Maj13addb9add#9add#11addb13 |
|
R,b2,2,b3,3,4,b5,5,b6,6,7 |
{0,1,2,3,4,5,6,7,8,9,11} |
2 |
Undecatonic
Chromatic |
|
C,Db,D,Eb,E,F,Gb,G,Ab,A,B |
G,Ab,A,Bb,B,C,Db,Ebb,Fbb,Fb,F# |
D,Eb,E,F,F#,G,Ab,Bbb,Cbb,Cb,C# |
A,Bb,B,C,C#,D,Eb,Fb,Gbb,Gb,G# |
E,F,F#,G,G#,A,Bb,Cb,Dbb,Db,D# |
B,C,C#,D,D#,E,F,F#,Abb,Ab,A# |
F#,G,G#,A,A#,B,C,C#,Ebb,Eb,E# |
C#,D,D#,E,E#,F#,G,G#,Bbb,Bb,B# |
F,Gb,G,Ab,A,Bb,Cb,Dbb,Db,Ebb,E |
Bb,Cb,C,Db,D,Eb,Fb,Gbb,Gb,Abb,A |
Eb,Fb,F,Gb,G,Ab,Bbb,Cbb,Cb,Dbb,D |
Ab,Bbb,Bb,Cb,C,Db,Ebb,Fbb,Fb,Gbb,G |
Db,Ebb,Eb,Fb,F,Gb,Abb,Ab,Bbb,Cbb,C |
Gb,Abb,Ab,Bbb,Bb,Cb,Dbb,Db,Ebb,Fbb,F |
Cb,Dbb,Db,Ebb,Eb,Fb,Gbb,Gb,Abb,Ab,Bb |
11_1_1_03_Undecatonic_Chromatic_3 |
Maj11b13addb9add#9add#11add#13 |
|
R,b2,2,b3,3,4,b5,5,b6,b7,7 |
{0,1,2,3,4,5,6,7,8,10,11} |
3 |
Undecatonic
Chromatic |
|
C,Db,D,Eb,E,F,Gb,G,Ab,Bb,B |
G,Ab,A,Bb,B,C,Db,Ebb,Fbb,F,F# |
D,Eb,E,F,F#,G,Ab,Bbb,Cbb,C,C# |
A,Bb,B,C,C#,D,Eb,Fb,Gbb,G,G# |
E,F,F#,G,G#,A,Bb,Cb,Dbb,D,D# |
B,C,C#,D,D#,E,F,F#,Abb,A,A# |
F#,G,G#,A,A#,B,C,C#,Ebb,E,E# |
C#,D,D#,E,E#,F#,G,G#,Bbb,B,B# |
F,Gb,G,Ab,A,Bb,Cb,Dbb,Db,Eb,E |
Bb,Cb,C,Db,D,Eb,Fb,Gbb,Gb,Ab,A |
Eb,Fb,F,Gb,G,Ab,Bbb,Cbb,Cb,Db,D |
Ab,Bbb,Bb,Cb,C,Db,Ebb,Fbb,Fb,Gb,G |
Db,Ebb,Eb,Fb,F,Gb,Abb,Ab,Bbb,Cb,C |
Gb,Abb,Ab,Bbb,Bb,Cb,Dbb,Db,Ebb,Fb,F |
Cb,Dbb,Db,Ebb,Eb,Fb,Gbb,Gb,Abb,Bbb,Bb |
11_1_1_04_Undecatonic_Chromatic_4 |
Maj13addb9add#9add#11add#13 |
|
R,b2,2,b3,3,4,b5,5,6,b7,7 |
{0,1,2,3,4,5,6,7,9,10,11} |
4 |
Undecatonic
Chromatic |
|
C,Db,D,Eb,E,F,Gb,G,A,Bb,B |
G,Ab,A,Bb,B,C,Db,Ebb,Fb,F,F# |
D,Eb,E,F,F#,G,Ab,Bbb,Cb,C,C# |
A,Bb,B,C,C#,D,Eb,Fb,Gb,G,G# |
E,F,F#,G,G#,A,Bb,Cb,Db,D,D# |
B,C,C#,D,D#,E,F,F#,Ab,A,A# |
F#,G,G#,A,A#,B,C,C#,Eb,E,E# |
C#,D,D#,E,E#,F#,G,G#,Bb,B,B# |
F,Gb,G,Ab,A,Bb,Cb,Dbb,Ebb,Eb,E |
Bb,Cb,C,Db,D,Eb,Fb,Gbb,Abb,Ab,A |
Eb,Fb,F,Gb,G,Ab,Bbb,Cbb,Dbb,Db,D |
Ab,Bbb,Bb,Cb,C,Db,Ebb,Fbb,Gbb,Gb,G |
Db,Ebb,Eb,Fb,F,Gb,Abb,Ab,Cbb,Cb,C |
Gb,Abb,Ab,Bbb,Bb,Cb,Dbb,Db,Fbb,Fb,F |
Cb,Dbb,Db,Ebb,Eb,Fb,Gbb,Gb,Ab,Bbb,Bb |
11_1_1_05_Undecatonic_Chromatic_5 |
Maj13b5addb9add#9addb13add#13 |
|
R,b2,2,b3,3,4,b5,b6,6,b7,7 |
{0,1,2,3,4,5,6,8,9,10,11} |
5 |
Undecatonic
Chromatic |
|
C,Db,D,Eb,E,F,Gb,Ab,A,Bb,B |
G,Ab,A,Bb,B,C,Db,Eb,Fb,F,F# |
D,Eb,E,F,F#,G,Ab,Bb,Cb,C,C# |
A,Bb,B,C,C#,D,Eb,F,Gb,G,G# |
E,F,F#,G,G#,A,Bb,C,Db,D,D# |
B,C,C#,D,D#,E,F,G,Ab,A,A# |
F#,G,G#,A,A#,B,C,D,Eb,E,E# |
C#,D,D#,E,E#,F#,G,A,Bb,B,B# |
F,Gb,G,Ab,A,Bb,Cb,Db,Ebb,Eb,E |
Bb,Cb,C,Db,D,Eb,Fb,Gb,Abb,Ab,A |
Eb,Fb,F,Gb,G,Ab,Bbb,Cb,Dbb,Db,D |
Ab,Bbb,Bb,Cb,C,Db,Ebb,Fb,Gbb,Gb,G |
Db,Ebb,Eb,Fb,F,Gb,Abb,Bbb,Cbb,Cb,C |
Gb,Abb,Ab,Bbb,Bb,Cb,Dbb,Ebb,Fbb,Fb,F |
Cb,Dbb,Db,Ebb,Eb,Fb,Gbb,Abb,Ab,Bbb,Bb |
11_1_1_06_Undecatonic_Chromatic_6 |
Maj13addb9add#9addb13add#13 |
|
R,b2,2,b3,3,4,5,b6,6,b7,7 |
{0,1,2,3,4,5,7,8,9,10,11} |
6 |
Undecatonic
Chromatic |
|
C,Db,D,Eb,E,F,G,Ab,A,Bb,B |
G,Ab,A,Bb,B,C,D,Eb,Fb,F,F# |
D,Eb,E,F,F#,G,A,Bb,Cb,C,C# |
A,Bb,B,C,C#,D,E,F,Gb,G,G# |
E,F,F#,G,G#,A,B,C,Db,D,D# |
B,C,C#,D,D#,E,F#,G,Ab,A,A# |
F#,G,G#,A,A#,B,C#,D,Eb,E,E# |
C#,D,D#,E,E#,F#,G#,A,Bb,B,B# |
F,Gb,G,Ab,A,Bb,C,Db,Ebb,Eb,E |
Bb,Cb,C,Db,D,Eb,F,Gb,Abb,Ab,A |
Eb,Fb,F,Gb,G,Ab,Bb,Cb,Dbb,Db,D |
Ab,Bbb,Bb,Cb,C,Db,Eb,Fb,Gbb,Gb,G |
Db,Ebb,Eb,Fb,F,Gb,Ab,Bbb,Cbb,Cb,C |
Gb,Abb,Ab,Bbb,Bb,Cb,Db,Ebb,Fbb,Fb,F |
Cb,Dbb,Db,Ebb,Eb,Fb,Gb,Abb,Ab,Bbb,Bb |
11_1_1_07_Undecatonic_Chromatic_7 |
Maj13#11addb9add#9addb13add#13 |
|
R,b2,2,b3,3,b5,5,b6,6,b7,7 |
{0,1,2,3,4,6,7,8,9,10,11} |
7 |
Undecatonic
Chromatic |
|
C,Db,D,Eb,E,Gb,G,Ab,A,Bb,B |
G,Ab,A,Bb,B,Db,D,Eb,Fb,F,F# |
D,Eb,E,F,F#,Ab,A,Bb,Cb,C,C# |
A,Bb,B,C,C#,Eb,E,F,Gb,G,G# |
E,F,F#,G,G#,Bb,B,C,Db,D,D# |
B,C,C#,D,D#,F,F#,G,Ab,A,A# |
F#,G,G#,A,A#,C,C#,D,Eb,E,E# |
C#,D,D#,E,E#,G,G#,A,Bb,B,B# |
F,Gb,G,Ab,A,Cb,C,Db,Ebb,Eb,E |
Bb,Cb,C,Db,D,Fb,F,Gb,Abb,Ab,A |
Eb,Fb,F,Gb,G,Bbb,Bb,Cb,Dbb,Db,D |
Ab,Bbb,Bb,Cb,C,Ebb,Eb,Fb,Gbb,Gb,G |
Db,Ebb,Eb,Fb,F,Abb,Ab,Bbb,Cbb,Cb,C |
Gb,Abb,Ab,Bbb,Bb,Dbb,Db,Ebb,Fbb,Fb,F |
Cb,Dbb,Db,Ebb,Eb,Gbb,Gb,Abb,Ab,Bbb,Bb |
11_1_1_08_Undecatonic_Chromatic_8 |
mMaj13addb9add#11addb13add#13 |
|
R,b2,2,b3,4,b5,5,b6,6,b7,7 |
{0,1,2,3,5,6,7,8,9,10,11} |
8 |
Undecatonic
Chromatic |
|
C,Db,D,Eb,F,Gb,G,Ab,A,Bb,B |
G,Ab,A,Bb,C,Db,D,Eb,Fb,F,F# |
D,Eb,E,F,G,Ab,A,Bb,Cb,C,C# |
A,Bb,B,C,D,Eb,E,F,Gb,G,G# |
E,F,F#,G,A,Bb,B,C,Db,D,D# |
B,C,C#,D,E,F,F#,G,Ab,A,A# |
F#,G,G#,A,B,C,C#,D,Eb,E,E# |
C#,D,D#,E,F#,G,G#,A,Bb,B,B# |
F,Gb,G,Ab,Bb,Cb,C,Db,Ebb,Eb,E |
Bb,Cb,C,Db,Eb,Fb,F,Gb,Abb,Ab,A |
Eb,Fb,F,Gb,Ab,Bbb,Bb,Cb,Dbb,Db,D |
Ab,Bbb,Bb,Cb,Db,Ebb,Eb,Fb,Gbb,Gb,G |
Db,Ebb,Eb,Fb,Gb,Abb,Ab,Bbb,Cbb,Cb,C |
Gb,Abb,Ab,Bbb,Cb,Dbb,Db,Ebb,Fbb,Fb,F |
Cb,Dbb,Db,Ebb,Fb,Gbb,Gb,Abb,Ab,Bbb,Bb |
11_1_1_09_Undecatonic_Chromatic_9 |
Maj13addb9add#11addb13add#13 |
|
R,b2,2,3,4,b5,5,b6,6,b7,7 |
{0,1,2,4,5,6,7,8,9,10,11} |
9 |
Undecatonic
Chromatic |
|
C,Db,D,Fb,F,Gb,G,Ab,A,Bb,B |
G,Ab,A,Cb,C,Db,D,Eb,Fb,F,F# |
D,Eb,E,Gb,G,Ab,A,Bb,Cb,C,C# |
A,Bb,B,Db,D,Eb,E,F,Gb,G,G# |
E,F,F#,Ab,A,Bb,B,C,Db,D,D# |
B,C,C#,Eb,E,F,F#,G,Ab,A,A# |
F#,G,G#,Bb,B,C,C#,D,Eb,E,E# |
C#,D,D#,F,F#,G,G#,A,Bb,B,B# |
F,Gb,G,Bbb,Bb,Cb,C,Db,Ebb,Eb,E |
Bb,Cb,C,Ebb,Eb,Fb,F,Gb,Abb,Ab,A |
Eb,Fb,F,Abb,Ab,Bbb,Bb,Cb,Dbb,Db,D |
Ab,Bbb,Bb,Dbb,Db,Ebb,Eb,Fb,Gbb,Gb,G |
Db,Ebb,Eb,Gbb,Gb,Abb,Ab,Bbb,Cbb,Cb,C |
Gb,Abb,Ab,Cbb,Cb,Dbb,Db,Ebb,Fbb,Fb,F |
Cb,Dbb,Db,Fbb,Fb,Gbb,Gb,Abb,Ab,Bbb,Bb |
11_1_1_10_Undecatonic_Chromatic_10 |
Maj13b9add#9add#11addb13add#13 |
|
R,b2,b3,3,4,b5,5,b6,6,b7,7 |
{0,1,3,4,5,6,7,8,9,10,11} |
10 |
Undecatonic
Chromatic |
|
C,Db,Eb,Fb,F,Gb,G,Ab,A,Bb,B |
G,Ab,Bb,Cb,C,Db,D,Eb,Fb,F,F# |
D,Eb,F,Gb,G,Ab,A,Bb,Cb,C,C# |
A,Bb,C,Db,D,Eb,E,F,Gb,G,G# |
E,F,G,Ab,A,Bb,B,C,Db,D,D# |
B,C,D,Eb,E,F,F#,G,Ab,A,A# |
F#,G,A,Bb,B,C,C#,D,Eb,E,E# |
C#,D,E,F,F#,G,G#,A,Bb,B,B# |
F,Gb,Ab,Bbb,Bb,Cb,C,Db,Ebb,Eb,E |
Bb,Cb,Db,Ebb,Eb,Fb,F,Gb,Abb,Ab,A |
Eb,Fb,Gb,Abb,Ab,Bbb,Bb,Cb,Dbb,Db,D |
Ab,Bbb,Cb,Dbb,Db,Ebb,Eb,Fb,Gbb,Gb,G |
Db,Ebb,Fb,Gbb,Gb,Abb,Ab,Bbb,Cbb,Cb,C |
Gb,Abb,Bbb,Cbb,Cb,Dbb,Db,Ebb,Fbb,Fb,F |
Cb,Dbb,Ebb,Fbb,Fb,Gbb,Gb,Abb,Ab,Bbb,Bb |
11_1_1_11_Undecatonic_Chromatic_Descending |
Maj13add#9add#11addb13add#13 |
|
R,2,b3,3,4,b5,5,b6,6,b7,7 |
{0,2,3,4,5,6,7,8,9,10,11} |
11 |
Undecatonic
Chromatic |
|
C,D,Eb,Fb,F,Gb,G,Ab,A,Bb,B |
G,A,Bb,Cb,C,Db,D,Eb,Fb,F,F# |
D,E,F,Gb,G,Ab,A,Bb,Cb,C,C# |
A,B,C,Db,D,Eb,E,F,Gb,G,G# |
E,F#,G,Ab,A,Bb,B,C,Db,D,D# |
B,C#,D,Eb,E,F,F#,G,Ab,A,A# |
F#,G#,A,Bb,B,C,C#,D,Eb,E,E# |
C#,D#,E,F,F#,G,G#,A,Bb,B,B# |
F,G,Ab,Bbb,Bb,Cb,C,Db,Ebb,Eb,E |
Bb,C,Db,Ebb,Eb,Fb,F,Gb,Abb,Ab,A |
Eb,F,Gb,Abb,Ab,Bbb,Bb,Cb,Dbb,Db,D |
Ab,Bb,Cb,Dbb,Db,Ebb,Eb,Fb,Gbb,Gb,G |
Db,Eb,Fb,Gbb,Gb,Abb,Ab,Bbb,Cbb,Cb,C |
Gb,Ab,Bbb,Cbb,Cb,Dbb,Db,Ebb,Fbb,Fb,F |
Cb,Db,Ebb,Fbb,Fb,Gbb,Gb,Abb,Ab,Bbb,Bb |
|
Modal groupings after the
first few traditional groups are an organizational structure created by
Richard Repp extrapolated from avaiable data sources. |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Chord analysis is by
Richard Repp and may contain mistakes (Please let me know!). Alternate
legitimate enharmonic analysis is also possible. |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
© Richard Repp 2019 All
Rights Reserved |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|